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APPENDIX A
DERIVING THE JACOBIAN FOR SURFACE NORMALS

This appendix provides a detailed derivation of the Jacobian
for nonlinear optimization of surface normals. Since we
are trying to optimize the surface normal as a reflectance
parameter, we need to find the derivatives of the BRDF
with respect to the components of the surface normal n.
This problem is complicated by the constraint that n must
be normalized.

We formulate this problem as an optimization of the
parameters nu and nv, such that n = (nu, nv, nw);nw =√
1− n2

u + n2
v. We observe that in any direction orthogonal

to the current estimate of n, an infinitesimal change to n in
that direction will not affect the length of n. This means that
if we define the coordinate axes u and v to be orthogonal
to the current estimate of n (i.e., n = (0, 0, 1) in u/v/w
space), the derivatives ∂nw/∂nu and ∂nw/∂nv are zero.
This simplifies the calculation considerably. Every iteration
of Levenberg-Marquardt, we redefine the u/v/w coordinate
system to maintain this condition. In principle, a Jacobian
matrix would need to be introduced into the formulae
for the partial derivatives to account for this change of
variables; however, since the change of variables is merely
an orthogonal linear transformation, the Jacobian is simply
the transformation matrix itself. To simplify notation, we
will derive the derivatives with respect to the components
of the normal vector after the change of variables, with the
understanding that these components will be transformed
back into the mesh’s tangent space after each iteration.

The specular BRDF, according to the work of Nam et
al. [1], is a product of an analytic factor (the ratio between
the masking / shadowing function and the denominator of
the Cook-Torrance model) and a factor for the product of
the microfacet distribution D and the Fresnel reflectivity F0,
which is to be approximated using a discrete lookup table
with linear interpolation between elements. For the latter
factor, we have a function defining the quantity DF0 as
a function of θh, the angle between the halfway direction
and the surface normal. Given the current value of θh
(based on the current surface normal), we can first esti-
mate the derivative ∂(DF0)/∂ cos θh as the ratio of discrete
differences ∆(DF0)/∆cos θh, calculating these differences
using the two closest values of θh on each side of the
current value of θh. Then, to convert this quantity into
derivatives with respect to the normal vector components,
we need to multiply it by the derivatives ∂ cos θh/∂nu and
∂ cos θh/∂nv. Since cos θh is just the inner product of the
vectors ωh = (hu, hv, hw) and n, we can say:

∂ cos θh
∂nu

=
∂

∂nu
(hunu + hvnv + hwnw) = hu (1)

By similar reasoning, ∂ cos θh/∂nv = hv. Note the im-
portance here of our choice of coordinates, allowing us to
assume that ∂nw/∂nu and ∂nw/∂nv are zero. In summary:

∂(DF0)

∂nu
= hu

∆(DF0)

∆ cos θh
(2)

∂(DF0)

∂nv
= hv

∆(DF0)

∆ cos θh
(3)

The remaining factors of the specular BRDF, G/(4 cos θr)
(note that cos θi is canceled out by the fact that the BRDF is
cosine-weighted), have derivatives that can be analytically
derived and combined with the derivatives of DF0 via
the product rule. Finally, we account for the impact of
the surface normal on diffuse reflectance by adding to our
derivatives the product of the diffuse albedo and the com-
ponents of the light direction ωi in the coordinate directions
u and v, which are the partial derivatives of Lambertian
diffuse reflectance with respect to nu and nv. The derivatives
for the full BRDF are thus as follows:

∂(f cos θi)

∂nu
= fD (ωi · u) +

G

4 cos θr
hu

∆(DF0)

∆ cos θh

+
DF0

4 cos2 θr

(
cos θr

∂G

∂nu
−G (ωr · u)

)
(4)

∂(f cos θi)

∂nv
= fD (ωi · v) +

G

4 cos θr
hv

∆(DF0)

∆ cos θh

+
DF0

4 cos2 θr

(
cos θr

∂G

∂nv
−G (ωr · v)

)
(5)

If G is calculated using the Smith height-correlated
model [2], [3], its derivatives can be defined in terms of the
function Λ(ω,n) and its derivative, which are specific to the
distribution of microfacets:

G =
1

1 + Λ(ωr,n) + Λ(ωi,n)
(6)

∂G

∂nu
= −

∂Λ(ωr,n)
∂nu

+ ∂Λ(ωi,n)
∂nu

(1 + Λ(ωr,n) + Λ(ωi,n))2
(7)

We make the approximation of evaluating masking and
shadowing by assuming the parametric GGX model, for
which Λ(ω,n) is defined as follows [3]:

Λ(ω,n) = −1

2
+

1

2

√
1 + α2 tan2 θ (8)

The derivative of Λ(ω,n) can be calculated by letting
ω = (ωu, ωv, ωw) and observing that cos θ = n · ω:

Λ(ω,n) =
−1

2
+
1

2

√
1 + α2

( 1

(nuωu + nvωv + nwωw)2
− 1

)
(9)

∂Λ(ω,n)

∂nu
=

−α2 ωu

2 cos3 θ
√
1 + α2 tan2 θ

(10)
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