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High-Fidelity Specular SVBRDF Acquisition from
Flash Photographs

Michael Tetzlaff

Abstract—Obtaining accurate SVBRDFs from 2D photographs of shiny, heterogeneous 3D objects is a highly sought-after goal for
domains like cultural heritage archiving, where it is critical to document color appearance in high fidelity. In prior work such as the
promising framework by Nam et al. [1], the problem is simplified by assuming that specular highlights exhibit symmetry and isotropy
about an estimated surface normal. The present work builds on this foundation with several significant modifications. Recognizing the
importance of the surface normal as an axis of symmetry, we compare nonlinear optimization for normals with a linear approximation
proposed by Nam et al. and find that nonlinear optimization is superior to the linear approximation, while noting that the surface normal
estimates generally have a very significant impact on the reconstructed color appearance of the object. We also examine the use of a
monotonicity constraint for reflectance and develop a generalization that also enforces continuity and smoothness when optimizing
continuous monotonic functions like a microfacet distribution. Finally, we explore the impact of simplifying from an arbitrary 1D basis
function to a traditional parametric microfacet distribution (GGX), and we find this to be a reasonable approximation that trades some
fidelity for practicality in certain applications. Both representations can be used in existing rendering architectures like game engines or
online 3D viewers, while retaining accurate color appearance for fidelity-critical applications like cultural heritage or online sales.

Index Terms—SVBRDF acquisition, normal map refinement, non-linear optimization, computational photography, flash photography,
photogrammetry, image-based relighting, real-time rendering.

✦

1 INTRODUCTION

SHINY three-dimensional objects, with complex surface
appearance characteristics that are sensitive to illumina-

tion and viewpoint, can be challenging subjects for digitiza-
tion and archiving. A single photograph is often not enough
to capture the entirety of an object’s color appearance. This
has motivated a movement towards 3D digitization within
the cultural heritage sector, with many institutions trying
to archive fully 3D digital representations of the objects in
their collections. Unfortunately, this same class of objects
for which 3D digitization would be most valuable exhibit
material properties – bumpy surfaces and heterogeneous
reflectance – that have been difficult to capture and portray
realistically within the domain of computer graphics using
established modeling and rendering techniques.

Image-based rendering and relighting refers to the process
of synthesizing images based on photographs of a real-
world 3D object (often combined with a geometric proxy).
Much of the existing work in this area falls into one of two
categories. On the one hand, some methods have required
photographic hardware that has been prohibitive in cost
for all except the most advanced research laboratories, the
largest film and television studios, or the most well-funded
cultural heritage institutions. On the other hand, other
approaches have relied on machine learning to synthesize
images using just a single source photograph, relying on a
trained model to fill in the missing information. However,
a few recent studies have used an approach somewhere
in the middle: a sequence of photographs taken using an
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ordinary camera with a mounted flash for backscattering
illumination [1], [2]. This “middle-ground” approach allows
for greater assurances of appearance reproduction fidelity
while remaining practical for smaller institutions.

One of these “middle-ground” methods, by Nam et al.
[1], uses a basis function approach, where spatially-varying
reflectance is approximated as a linear combination of a few
global isotropic BRDFs with spatially varying weights. In
this work, we explore several modifications to the founda-
tional algorithm used by Nam et al. While they addressed
both geometry and reflectance recovery, we simplify our
implementation by redefining the problem to assume suffi-
ciently accurate macroscale geometry acquired from off-the-
shelf photogrammetry software, and focus only on reflect-
ance (microscale) and normal (mesoscale) estimation. Al-
though Nam et al. was novel for its simultaneous acquisition
of reflectance and geometry, we believe their approach also
has merit for the case considered here where geometry can
be obtained through other means with sufficient accuracy.

With this simplification in mind, we consider three mod-
ifications to Nam et al.’s implementation. First, Nam et al.
make an assumption of isotropy about the surface normal,
a symmetry constraint that implicitly assumes accurate nor-
mal vectors in order for the axis of symmetry to be correct.
In general, the appearance model being optimized is non-
linear with respect to surface normals; however, Nam et al.
approximate reflectance as constant with respect to normal
direction in order to simplify normal estimation to a linear
optimization. We study the impact of this simplification
by applying non-linear optimization to the full model and
contrast it with the results of the linear method.

Second, we observe that the monotonicity constraint
used by Nam et al. is equivalent to fitting the basis functions
to a linear combination of step functions. To improve the
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Ground Truth Non-linear (this work) Parametric reduction Linear (Nam et al.)

Fitting RMSE: 0.060 0.067 0.078
Validation RMSE: 0.075 0.077 0.089

Fig. 1. SVBRDF acquisition for a cloisonné altarpiece from 18th century China (94 photographs), in the collection of Mia. From left to right: a ground
truth photograph not part of the input dataset, the same viewpoint reconstructed with a technique leveraging nonlinear optimization of mesoscale
normals, the same viewpoint after reduction to a parametric model (GGX), the same viewpoint reconstructed with a simplified technique applying
linear optimization of mesoscale surface normals. Two error metrics are reported for each case: the fitting RMSE averaged over all the input images,
and the validation RMSE averaged over 94 additional images held out for validation. The reproduction quality and RMSE are superior when using
nonlinear optimization, and the visual appearance is acceptable even with a reduction to the GGX model, despite a slightly higher RMSE.

smoothness of the BRDF and reduce overfitting of normals,
we generalize this using smoothstep functions.

Finally, to take advantage of contexts which do not
support custom BRDFs, we show how Nam et al.’s non-
parametric, basis-function representation can be converted
to a parametric GGX model. An example of a situation
where this is useful is real-time global illumination as im-
plemented in modern game engines, which typically does
not support custom BRDFs due to the need to precompute
indirect lighting, and at the same time exhibits less sensitiv-
ity to the BRDF than highlights from discrete light sources.

We evaluate each of these variations by using flash
photographs to produce digital representations of several
shiny and heterogeneous 3D artifacts from the Minneapolis
Institute of Art (Mia) with complex mesoscale geometry and
rich specular color appearance. We find that each of the
first two extensions improves the results, while the third is
a simplification with a reasonably small impact on visual
fidelity. One key finding is that surface normals have a
very significant impact on the visual quality of the BRDFs
generated under constraints of symmetry and isotropy, par-
ticularly for objects with complex mesoscale geometry.

The color appearance accuracy achieved by this work
is particularly relevant for cultural heritage, where it is
expected that any digital depiction must be faithful to the
original artifact. It is also highly applicable in online sales
and marketing, where the appearance of a digital represen-
tation of a product needs to match the physical item being
sold. Furthermore, we apply this technique using the Unity
game engine* to demonstrate its immediate applicability in
an existing commercial rendering architecture.

*https://unity.com/

2 RELATED WORK

2.1 Image-based rendering
Historically, there have been two broad approaches for
acquiring reflectance from photographs. The first is image-
based rendering, which directly utilizes photographs in the
rendering pipeline. The challenge with this paradigm is
transferring the color appearance data in the photographs
to novel viewpoint and illumination conditions, particularly
specular highlights and reflections. Early approaches used
highlight warping to improve image quality with a sparse
set of images [3]. Other techniques constrain the problem by
using radial basis functions [4], [5], compressed sensing [6],
or the Kernel Nyström method [7]. A common assumption
made by many image-based rendering and relighting meth-
ods is that the specular reflectance lobe is both symmetric
and isotropic with respect to a “specular normal” direction,
which allows the 4D BRDF to be reduced to a 1D function.
However, for this assumption to be valid, the specular
normal directions must be chosen carefully, a principle that
will be explored further in the present work.

Recently, there has been interest in employing neural
networks to improve reconstruction quality from a sparse
collection of images [8], [9], [10], [11], [12], [13], [14], [15],
[16], [17], [18], [19], [20], [21], [22], [23]. Many techniques re-
quire only a single photograph, relying on a learned model
to fill in the rest. While such approaches have produced
impressive results, they are known to be dependent on
the quality of the training data, and it is unclear whether
state-of-the-art trained models are sufficient for fidelity-
sensitive application domains like cultural heritage preser-
vation and archiving. Additionally, while real-time neural
network evaluation is viable [24], [25], alternatives that are
more lightweight do subjectively have a practical appeal.
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2.2 Reflectance parameter estimation from photos
The alternative to image-based rendering is to explicitly
estimate reflectance parameters from photographs for use
in a traditional graphics pipeline. Often this problem is
simplified by assuming that the subject is 2D [4], [26], [27],
[28], [29], [30], [31], homogeneous [32], [33], or has geometry
that is known in advance with high accuracy [34]. Several
works have estimated not only the reflectance but also
the mesoscale surface geometry, often using iterative least
squares optimization for the surface normal estimate [35],
[36], [37]. Even when an object is captured under passive
illumination, sharp features in the passive illumination con-
ditions can be exploited to extract the width and shape of
the reflectance lobe [38], [39], [40], [41], or neural networks
may be used to infer these parameters [42], [43]. Polarization
has also been used to estimate both the specular reflectance
parameters and the mesoscale surface orientation [44], [45].

Specular reflectance is generally a non-linear function,
so it is therefore non-trivial to optimize specular reflectance
parameters. Techniques that have been used range from
Levenberg-Marquardt optimization [35] to brute force lin-
ear search in the parameter space [34], [37]. Differentiable
rendering, like the pipeline introduced by Laine et al. [46],
presents another interesting avenue that could be explored
to solve this problem. However, it is also common for a
heuristic to be employed that does not guarantee optimality
for all possible reflectance lobes, but does still converge
to the correct answer when there is a perfect fit for the
true reflectance distribution under the assumed parametric
model [26], [33], [39]. This latter approach is often good
enough even when the true reflectance lobe does not match
the expected parametric model.

2.3 Use of photographs with backscattering lighting
Another way to classify methods for reflectance recov-
ery is by the photographic technique used; in particu-
lar, the scheme for sampling the viewpoint and lighting.
The present work makes use of backscattering photography,
where the camera and light source are nearly co-located
and move together. This configuration has been widely
used for acquisition of either flat samples or 3D scenes
with limited viewpoint [9], [10], [14], [27], [29], [30], [31],
[47], and recently by Tetzlaff and Meyer [2] and Nam et
al. [1] to relight arbitrary viewpoints of 3D objects with
non-parametric spatially-varying specular reflectance. The
recent neural network technique by Gao et al. [20] also used
backscattering flash illumination for its input photographs.

The method by Nam et al. [1] is notable as the first
technique that is capable of acquiring an SVBRDF from
backscattering flash photographs without any loss of gen-
erality in the shape of the 3D geometry, the 1D profile of
the specular highlights, or the spatially-varying texture. The
only significant limiting assumption they make is that of
isotropy about the estimated surface normal. Their work
was also novel in its ability to acquire the geometry itself
as part of the process. The recent work by Bi et al. [48], [49]
builds on Nam et al. by improving the method in which
the geometry is reconstructed, using discrete volumetric or
implicit continuous representations of the scene geometry
without an explicit triangulated mesh. In contrast, the focus

of the present work is to derive a technique from Nam et
al. that is optimized for use cases where highly accurate 3D
models can be reconstructed using commercial photogram-
metry software (a typical workflow for cultural heritage in-
stitutions). In such cases, only the reflectance and mesoscale
geometry (a normal map) need to be recovered, so we only
use Nam et al.’s method for recovering reflectance and
normals while assuming accurate macroscale geometry as
an input to the technique.

3 METHOD

The focus of this work is the development and analysis of
several modifications to the innovative SVBRDF acquisition
framework proposed by Nam et al. [1]. We begin by defining
a baseline implementation and then proceed to describe
these variations that will be analyzed to evaluate their
impact on image reproduction fidelity.

3.1 Photography
The photographic configuration used for data acquisition is
as follows. We use multiple (50 to 500) photographs of an
object taken under a backscattering punctual light source,
mounted on the camera and nearly co-located with the film.
(This is a trivial setup that is even available with the flash on
a typical smartphone.) The light source should emit “white”
light with a spectral composition that will be acceptable
when rendering synthetic images. The images are saved in
the sRGB color space and may have non-linear tonemapping
applied; thus, prior to other calculations, we will convert
colors to a linear space using a calibration chart [50] which
provides reference values that can be piecewise interpolated
using a standard gamma curve in between these values.

We require camera registration (the position and orien-
tation of the camera when each photo was taken) and a
3D model of the object as input to the rendering pipeline.
In this work, a commercial software package called Agisoft
Metashape (formerly PhotoScan) † was used to calculate this
information from the photographs themselves; however, we
are not coupled to a particular implementation for this pre-
processing step. Using these camera registrations, projective
texture mapping [51], [52] is used to map the photographs
onto the 3D model, projected and rasterized in the model’s
2D texture coordinate space. To account for this projection,
in all optimization calculations, we will weight each pixel
by the cosine of the angle between the viewing direction ωr

and the normal vector of the polygonal geometry. This com-
pensates for the fact that in the original images, the surface
was viewed at a lower effective resolution as the viewing
direction becomes closer to parallel with the surface.

Although the light source is very close to the camera, it
is still important to account for the displacement of the light
from the camera. A straightforward way to accomplish this
is by completing a one-time manual calibration that exploits
shadows present in the input imagery. In this step, the user
views the object from the position of the light source and is
instructed to move the viewpoint until all of the shadows
are occluded by the object’s geometry. At this point, the
viewpoint will represent the true position of the light source.

†http://www.agisoft.com/
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3.2 Reflectance Model

The specular reflectance model used throughout this work is
a microfacet model after Cook and Torrance [53]. Using the
notation that ωi is the illumination direction with incident
radiance Li, and ωr is the reflection direction with exitant
radiance Lr, the Cook-Torrance BRDF is defined as follows:

f(ωi, ωr) =
Lr

Li cos θi
=

D(ωh)G(ωi, ωr) F (ωi, ωr)

4 cos θi cos θr
(1)

Throughout this work, we use the standard notation that
for a direction ω, cos θ is the inner product of ω and the
normalized normal vector n. We use the typical notation
that F (ωi, ωr) is the Fresnel reflectance, G(ωi, ωr) is the
microfacet masking and shadowing function, and D(ωh)
is the distribution of microfacets, defined as a function of
the halfway direction ωh that bisects the illumination and
reflection directions. Within the context of backscattering
photographs, it can be assumed that F (ωi, ωr) is a constant
denoted as F0 [54].

After Nam et al. [1] in addition to a wide range of prior
computer graphics literature, we make the simplification of
representing reflectance in an RGB color space rather than
treating it as a spectral quantity. For a virtual light source
that is also white with the same spectral distribution as the
physical light source used to capture the photographs, this
approximation will produce accurate results in the same
RGB color space. Colored light can be emulated using the
simplification that is ubiquitous in computer graphics of
multiplying the RGB-valued BRDF by an RGB light color; in
most cases this should produce satisfactory results, although
physical accuracy can no longer be guaranteed under such
conditions. Multispectral BRDF acquisition is not addressed
in this work, but generalization to multispectral is possible
and could be a direction of future work.

3.3 Baseline Method for Reflectance Estimation

Our objective is to estimate the distribution of microfacets
D(ωh), assumed to be isotropic around the surface normal.
While parameterized formally on the halfway angle θh,
this distribution is also spatially varying, defined at each
sampled point on the object’s surface. To solve this problem,
we use the framework conceived by Nam et al. [1].

A brief summary of this architecture now follows. The
distribution of microfacets is an arbitrary 1D function that
is constrained to be monotonic and non-negative, and in
practice is estimated and evaluated using a table of dis-
crete values that will be interpolated to form a continuous
function. The Fresnel reflectance F0 is also taken to be
absorbed into the microfacet distribution as represented by
this lookup table; in other words, the values in this table
actually represent D(ωh)F0. At each surface position, the
local reflectance is represented by spatially-varying weights
modulating a linear combination of a small number of
global basis functions. An iterative optimization framework
is employed that alternatingly optimizes basis functions,
spatially varying weights, and surface normals; K-mean
clustering is used to initialize the spatially varying weights.
Although the optimization of normals might be underdeter-
mined if no constraints were imposed on the distribution of

microfacets at each sampled surface position, the use of a
small number of global basis functions in combination with
the monotonicity constraint on each distribution ensures
that normal optimization over a large collection of images is
generally a sufficiently constrained problem.

Our baseline method differs in a few ways from the
implementation described by Nam et al. First, our problem
statement differs from theirs in that we assume that the
input geometry is sufficiently detailed. Whereas Nam et al.
included an additional step in each iteration to refine the
geometry itself, our objective is instead to estimate a normal
map to increase the appearance of surface detail without
modifying the underlying mesh. There is nothing inherent
to the rest of our work that would prevent the mesh from
being updated as Nam et al. did; however, we did not find
this necessary due to the high geometric quality achieved
with commercial photogrammetry software. Since Nam et
al. used the refined geometry from the previous iteration as
the input to the next iteration, we likewise use the refined
normals as the initial estimate for the next iteration.

Second, whereas Nam et al. minimized error between
the original and reconstructed reflectance, our objective is
to minimize error in the reconstructed radiance, normalized
to account for variation in incident radiance. Put another
way, this amounts to an additional factor of cos θi in our
calculations, ensuring that pixels where the surface was
illuminated at a strong angle (in other words, where cos θi
is small) do not get unduly amplified in importance. This
change is justified by how we have defined our objective,
which is to build a model that primarily fulfills two pur-
poses: compression of a large number of photographs to a
more compact format with minimal loss in image fidelity,
and transformation to a format that can predict lighting
conditions not captured in the photographs. Since we are
only concerned with estimating physical parameters insofar
as they facilitate these goals, our primary error metric is the
difference in per-pixel image radiance, rather than differ-
ences in reflectance or reflectance parameters.

In addition, we applied a couple of minor changes that
were trivial to implement and theoretically improve the
accuracy of the results. The first of these is that we produce
a final estimate of the diffuse albedo map after specular esti-
mation has been completed by subtracting the reconstructed
specular reflectance from each source image and performing
a per-texel linear regression over the residual. This ensures
that the range of the diffuse color space is not limited by the
basis functions selected for specular estimation.

We also use the height-correlated Smith function for
microfacet masking and shadowing, which has been shown
to be more accurate than the V-cavity model employed by
Nam et al. [55]. Since the Smith function depends on the
microfacet distribution, we approximate it by substituting
the masking / shadowing function for the GGX microfacet
distribution model (with roughness estimated using the
method described in section 3.6), rather than calculating
the masking / shadowing function for the non-parametric
microfacet distribution. One ramification of the switch from
the V-cavity model to the Smith model is that the masking
and shadowing function changes after every iteration of the
algorithm as the microfacet distribution is improved. While
this might raise concerns about convergence, in practice
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the effect of the masking and shadowing function is minor
(particularly for backscattering images) and does not seem
to affect the algorithm’s ability to converge.

3.4 Linear vs. Nonlinear Estimation of Normals

Having established a baseline method for simultaneous es-
timation of spatially varying reflectance and normals, based
on the framework laid out by Nam et al., we now proceed to
consider three modifications to this baseline. The first and
perhaps most significant of these is the use of non-linear
optimization to estimate the surface normal at each texel in
the normal map.

As described by Nam et al., the cost function being
minimized, over K views and P samples per view with
sample visibility vp,k (treating the BRDF as spatially varying
over x) is:

K∑
k=1

P∑
p=1

vp,k

(
[Lr]p,k

− f([ωi]p,k, [ωr]p,k,xp,np)[Li]p,k(np · [ωi]p,k)
)2

(2)

Since f is generally a nonlinear function, this requires
nonlinear optimization to estimate np at each surface posi-
tion p. To simplify the problem, Nam et al. assumed f to
be locally constant with respect to np (using the value of
np from the previous iteration to evaluate f ), reducing the
problem to a linear optimization:

K∑
k=1

P∑
p=1

vp,k

(
[Lr]p,k − fp,k[Li]p,k(np · [ωi]p,k)

)2
(3)

In contrast, we explore the optimization of the full non-
linear model represented by the cost function in Equation 2,
using the Levenberg-Marquardt algorithm [56], [57]. Rec-
ognizing this as a nonlinear least squares problem (with
Lr as the observations and Lif cos θi as the model being
fit), the gradient of the cost function is determined by the
gradient of the model with respect to the normal vector
(the Jacobian). To simplify calculation, we use a coordinate
space where only two components of the normal vector
n = (nu, nv, nw) have a nonzero gradient. The details of
this change of coordinates are described in an appendix.
Applying Equation 1, the gradient of the model comes out
to (omitting the (p, k) subscripts for clarity):

∂(f cos θi)

∂nu
= fD (ωi · u) +

G

4 cos θr
hu

∆(DF0)

∆ cos θh

+
DF0

4 cos2 θr

(
cos θr

∂G

∂nu
−G (ωr · u)

)
(4)

The gradient with respect to nv is symmetric, while the
gradient with respect to nw is zero, as noted above. The gra-
dient of G can be found analytically. The full derivation of
this gradient (including the gradient of G) is also described
in the appendix. In principle, a differentiable rendering
framework like Laine et al.’s [46] could be applied instead,
but we found the analytic formula straightforward enough
to calculate, which has the practical advantage of avoiding
additional software dependencies.

The first time we attempt to estimate surface normals,
we use the 3D model’s vertex normal as our initial estimate.
Afterwards, we use the previously estimated normal map as
the new initial estimate each time we begin the Levenberg-
Marquardt algorithm. Every time the normal estimation
step begins (after updating the basis functions and spatially
varying weights), we reset the damping factor to 1.0 for all
texels. The surface normals for all texels are refined in paral-
lel on the GPU, updating the damping factor independently
for each texel after each Levenberg-Marquardt iteration. For
every texel, we treat each RGB color channel as a different
sample. We determine that the algorithm has converged
when either the total root-mean-squared error (RMSE) in
reconstruction (across all texels) fails to decrease after a
particular iteration, or the error decreases by less than some
minimum threshold (we used a threshold of 0.00001 RMSE
in cosine-weighted reflectance) for 8 consecutive iterations.

3.5 Arbitrary vs. Smooth Microfacet Distributions

The second extension examines the constraints applied
when estimating the global basis functions for representing
the distribution of microfacets. The original method by Nam
et al. applied a monotonicity constraint when estimating
these functions to ensure that they always decrease with
angle from the mesoscale surface normal. Numerically, this
is essentially equivalent to fitting the distribution of micro-
facets as a linear combination of step functions with non-
negative weights: each step function corresponding to an
element in the discrete definition of the microfacet distri-
bution. In practice, we observed that this often leads to
discontinuities in the estimation of the microfacet distribu-
tion as the algorithm converges to a local minimum (due to
ambiguity between reflectance and surface normal).

To address this problem, we generalize to the “smooth-
step” function which is common in computer graphics [58]:

smoothstep(t) = 3t2 − 2t3 (5)

t is typically defined in terms of two edges, but in our
implementation, we parameterize it using a single edge
(effectively using zero as the second edge).

t =
edge − x

edge
(6)

Practically speaking, this constraint means the “transi-
tion range” of the function is smaller when the edge is close
to 0 (allowing for very sharp highlights on highly specular
surfaces) but gets larger as the edge increases, preventing
the discontinuities seen with only a monotonicity constraint.
This ensures that the distribution of microfacets is not only
monotonic, but also continuous and smooth, which are also
properties typically expected of a microfacet distribution
function. Figure 2 illustrates the difference between step and
smoothstep functions as they are applied here.

Just as a monotonicity constraint amounts to represent-
ing each global basis function as a linear combination of
step functions, we can instead substitute these smoothstep
functions (using a similar range of edges) and optimize each
basis function as a linear combination of smoothsteps. For
efficiency, we still ultimately represent each global basis
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Fig. 2. Top: Representative examples of step functions that can be
linearly combined with non-negative weights to form a monotonic func-
tion. Bottom: Representative examples of smoothstep functions that can
be linearly combined with non negative weights to form a monotonic
function with some smoothness guarantees.

function as a discrete lookup table by precalculating the
weighted sum of smoothstep functions for each element
of the table. This discrete representation also informs the
choices of edges for the range of smoothstep functions; each
discrete element becomes an edge for one of the smoothstep
functions considered.

Like Nam et al., the global basis functions are optimized
simultaneously using linear optimization over all views and
surface positions, a single linear system to be solved that
provides the optimal solution for each of the global basis
functions. (An important clarification must be emphasized
here: there are two distinct steps that optimize some linear
combination of vectors, which are not to be confused. The
first is the optimization of global microfacet distribution
functions as a linear combination of smoothsteps, while the
second is the optimization of the SVBRDF as a combination
of the global functions with spatially-varying weights. For
the latter, we use Nam et al.’s method without modification.)

3.6 Estimation of Specular Reflectance Parameters

The final variation considers the use of a parametric ana-
lytic model for the distribution of microfacets. The discrete
sampling proposed by Nam et al. [1] and employed in the
previous sections is generally expected to be superior to a
parametric model due to its generality. However, a paramet-
ric model is still useful for certain purposes. It can be used to
simplify the calculation of the height-correlated Smith mask-
ing and shadowing function, which is not strongly observed
from backscattering illumination, but can be derived from
the distribution of microfacets. It can be used to optimize
real-time rendering of environment reflections, which are
typically less sensitive to the precise shape of the BRDF
than highlights of a punctual light [59]. This calculation
will also yield an estimate of the base Fresnel reflectivity
F0, which can be useful for factoring the Fresnel reflectance
from the distribution of microfacets, allowing for simulation
of Fresnel reflectance at grazing angles.

For the roughness parameter, the distribution of mi-
crofacets is taken to be modeled by the GGX (also called
Trowbridge-Reitz) model [60], [61]:

DGGX
α (θh) =

α2

π(1 + (α2 − 1) cos2 θh)2
(7)

We note that while there is a range of excellent prior
work on the topic of specular parameter estimation (as dis-
cussed in section 2), the approach described here is desirable
in its simplicity, particularly given that we already have a
refined estimate of the distribution of microfacets and only
need to reduce this function to a parametric approximation.

We start by applying the GGX microfacet distribution to
the Cook-Torrance model:

Lr

Li cos θi
=

α2

π(1 + (α2 − 1) cos2 θh)2
G(ωi, ωr) F (ωi, ωr)

4 cos θi cos θr
(8)

For backscattering reflectance, the Fresnel reflectance
function reduces to the reflectivity constant F0, and to a
lesser extent, the microfacet masking and shadowing func-
tion is approximately constant for all but the most extreme
photographic angles. Applying some algebraic manipula-
tion, we arrive at the following equation:

4π(1 + (α2 − 1) cos2 θh)
2 cos θr

Lr

Li
≈ α2F0 (9)

Nonlinear optimization could be used at this point to
find optimal solutions for F0 and α. However, in practice
this has not proven to be necessary; the simpler approach
described below has shown itself to be sufficient.

The first step is to evaluate the BRDF where the halfway
direction coincides with the normal directions; i.e., due to
the backscattering lighting configuration, ωi ≈ ωr ≈ ωh =
n. Call the value of the BRDF in this direction f0.

We constrain our estimation process by enforcing that f0
is the magnitude of the parametric BRDF at the specular
peak. This establishes a relationship between the surface
roughness and the Fresnel reflectivity:

4πf0α
2 = F0 (10)

With this constraint established, each element of the
discretely sampled microfacet distribution function that is
less than the specular peak can be used to generate an
estimate of F0:

4π cos θr
Lr

Li

(
1− cos2 θh +

F0

4πf0
cos2 θh

)2

=
F0

2

4πf0
(11)

F0 = 4πf0
(1− cos2 θh)

√
cos θrLr/Li√

f0 − cos2 θh
√
cos θrLr/Li

(12)

The estimates derived from all the samples can be av-
eraged to calculate F0 at each surface position. Since Eq.
12 becomes indeterminate when the denominator is zero, a
weighted average is preferable. The weight we use for each
sample k is the square of the denominator in Equation 12:

wk =

(√
f0 − cos2 θkh

√
cos θkr

Lk
r

Lk
i

)2

(13)

Finally, α can be estimated by solving Equation 10.
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Ground truth Non-linear Linear

m = 0.05 Normal map RMSE: 0.055 Normal map RMSE: 0.530

m = 0.15 Normal map RMSE: 0.024 Normal map RMSE: 0.295

m = 0.30 Normal map RMSE: 0.008 Normal map RMSE: 0.450

m = 0.50 Normal map RMSE: 0.013 Normal map RMSE: 0.010

Fig. 3. A ground truth test for normal estimation using synthetic data with varying microscale surface roughness (m). From left to right: The
ground truth normal map; the normal map reconstructed from source images using nonlinear optimization (Levenberg-Marquardt); the normal map
reconstructed from source images using linear optimization (Nam et al.). (Due to the texture parameterization, the entire normal map was not used.)
For each instance (including the ground truth), a rendering of the material in Unity is depicted under novel lighting with respect to the input images.
The linear simplification results in severely biased normals, particularly for shinier surfaces. The RMSE between the ground truth normal map and
the reconstructed normal map (over the region covered by the texture parameterization) is reported under each reconstruction.

4 RESULTS

4.1 Validation of normal estimation with synthetic data
To evaluate the impact of nonlinear optimization of surface
normals as discussed in sectifon 3.4, we begin with an exper-
iment on synthetic images of a simple sphere with a normal
map applied, using a metallic Cook-Torrance material with a
GGX microfacet distribution. The lighting in this experiment
was ideal: an infinitely small point light source perfectly
co-located with the camera. Only one basis function was
used for this controlled experiment with a homogeneous
specular material, and the smoothstep extension of section
3.5 was also applied. To evaluate the effectiveness of each
normal optimization method, the estimated normal map can
be compared to the one used to generate the source images.

Figure 3 shows the results of this test across four GGX
roughness values. The original normal map is shown for

each case alongside the estimated normal maps for both the
nonlinear and linear methods. Alongside the normal maps,
a rendering of each version in Unity under novel lighting
is shown (using the method of section 3.6 to estimate a
parametric GGX model for reflections of the environment
with Unity’s built-in reflection probe system). For each
estimate, the RMSE between the ground truth normal map
and the reconstruction (across all texels used in the UV map-
ping) is listed. Whereas the nonlinear algorithm produces
reasonable results for most roughness values, just starting
to encounter numerical issues at very low roughness, the
linear method exhibits severe convergence issues for all but
the highest roughness value considered. This phenomenon
is analyzed further in section 5.1.
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Ground truth Nonlinear + Smoothstep (1) Nonlinear + Step (2) GGX reduction (3) Linear

Fitting RMSE: 0.071 0.075 0.078 0.097
Validation RMSE: 0.068 0.071 0.075 0.095

Fitting RMSE: 0.025 0.025 0.037 0.030
Validation RMSE: 0.031 0.031 0.043 0.034

Fig. 4. Top: bronze statue of Guan Yu (56 images). Bottom: bronze ding food vessel (103 images). From left to right: a ground truth photograph,
not one of those selected as a source image; the same viewpoint reconstructed using nonlinear optimization of mesoscale surface normals and
smoothstep functions for reflectance (one of eight optimized basis functions plotted in the lower right); then, the same viewpoint reconstructed using
each of three alternative methods for comparison: (1) using step instead of smoothstep for reflectance, (2) reducing to a parametric model (GGX,
using smoothstep for the intermediate representation), and (3) using linear optimization for mesoscale normals. Two error metrics are reported for
each case: the fitting RMSE averaged over all the input images, and the validation RMSE averaged over the remaining held-out images.

4.2 Validation of reflectance for real-world objects

Next, we studied three objects from Mia that had been
previously photographed from many viewpoints under
backscattering flash illumination. The light source used for
each object was a conventional spotlight for professional
photography, which is reasonably close to the ideal of a
point light source. The objects studied include a bronze
statue of Guan Yu from 16th century China (240 images total,
56 used for reflectance recovery), a cloisonné altarpiece from
18th century China (188 images total, 96 used for reflectance
recovery), and a bronze ding food vessel from 3rd century
China (500 images total, 103 used for reflectance recovery).
The Guan Yu artifact was chosen because of its moder-
ately high degree of metallic specularity and its complex
mesoscale geometry. Similarly, the cloisonné altarpiece not
only has spatially varying texture and geometry, but also
exhibits spatially-varying specular characteristics. Both of
these objects exemplify use cases for image-based methods
that cannot be easily solved with traditional modeling tech-
niques. In addition, the ding vessel was chosen to evaluate
the technique for an object with high specularity, which
would require a very high number of photographs to be
sampled sufficiently without the use of basis functions.

Figures 1 and 4 show the results of nonlinear optimiza-
tion of normals with smoothstep for reflectance (the combi-
nation of sections 3.4 and 3.5) against three alternatives: the
use of step rather than smoothstep (Figure 4 only), the use of
the parametric reduction (section 3.6) and the use of linear
optimization for normals. Each example has eight basis
functions, and the resolution of all texture maps (diffuse,

normal, specular, and basis weights) is 2048x2048. For each
test case, a representative example of a reconstructed vali-
dation image is shown along with RMSE metrics, calculated
in terms of gamma-corrected image radiance (γ−1 = 1/2.2
for encoding), normalized against incident surface radiance
(or equivalently: gamma-corrected, cosine-weighted reflect-
ance). Note that the optimization itself is performed in
terms of non-gamma-corrected image radiance, so this is not
precisely the same error space used for optimization (which
is not gamma-corrected for efficiency and simplicity). For
each test case, two aggregate RMSE metrics are listed:
one measuring the fitting error across the input images
used for reflectance recovery, and the other measuring the
reconstruction error across the remaining held-out images
reserved for validation.

The figures illustrate that the use of nonlinear optimiza-
tion substantially improves the quality of the reconstructed
image over the linear optimization (alternative 1). It is worth
noting that the specular appearance of the object degrades at
a rate that is not necessarily captured entirely by the RMSE
reported, i.e., for Guan Yu the linear results appear to be
much worse than the nonlinear version.

The parametric fit (alternative 2) generally has a higher
RMSE than the corresponding basis function representation,
and is not primarily intended to be used for rendering
highlights of punctual lights. However, it is still able to
produce a rendering which, upon casual inspection, appears
to be a reasonable approximation of the original image. This
suggests that it should be appropriate for the less fidelity-
critical applications considered (calculation of derived func-
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Ground truth 239 views 120 views 56 views

RMSE: 0.080 0.081 0.090

Fig. 5. Results for Guan Yu with varying number of input images. From left to right: ground truth, reconstruction from 239 images (all except for the
view being reconstructed), reconstruction from 120 images, reconstruction from 56 images. The per-pixel RMSE for the single viewpoint depicted
is reported under each reconstructed image.

Artifact # views Optimization time
Cloisonné altarpiece 94 44 min.
Cloisonné altarpiece 188 56 min.

ding vessel 103 22 min.
ding vessel 500 3 hr. 36 min.

Guan Yu 56 13 min.
Guan Yu 120 39 min.
Guan Yu 240 1 hr. 18 min.

TABLE 1
Optimization time for several input cases using the nonlinear method

for estimation of normals.

tions such as masking / shadowing and Fresnel reflectance,
and filtering of environment reflections).

To compare the optimization of basis functions using
step (alternative 3) against smoothstep, one of the basis
functions is plotted for both the step function results and
the original smoothstep results. The discontinuities in the
basis functions are very clear when using step functions for
both objects. In contrast, the basis functions for smoothstep
are more plausible, demonstrating a clear qualitative advan-
tage. How this manifests as a quantitative difference in im-
age quality between step and smoothstep is less pronounced
than for the linear / nonlinear comparison, but the smooth-
step function does slightly improve reconstruction quality
for Guan Yu, with no significant difference for the ding
vessel. While the improvement from smoothstep is probably
only observable under punctual light sources like the point
light used in Fig. 4, it is worth noting that such illumination
is still quite prevalent in real-time applications due to its
performance advantage over global illumination. Finally, we
note that for the Guan Yu example, the use of smoothstep
decreased RMSE not only for the validation images, but also
for the source images. This suggests that the algorithm may
be more likely to converge to a local minimum when using
only a monotonicity constraint without smoothness.

For certain objects, like Guan Yu, the method improves
with the number of input images available. Figure 5 shows
the results for Guan Yu for three input sets of different
sizes, using just a single validation image. While all three
produce acceptable results, the image quality and RMSE for

the reconstructed validation image improves as the input
size increases.

Table 1 lists the optimization time (using the nonlinear
method for estimation of normals) for several input cases.
As before, eight basis functions were optimized for each
object, using 90 smoothstep functions. The hardware for
these benchmarks was a laptop with a six-core Intel i7-
8750H CPU, 32 GB of RAM, and an NVIDIA Quadro P3200
GPU with 6 GB of dedicated VRAM. In general, the time
complexity for each iteration of the optimization process
is linear with respect to the number of input photographs.
However, since the optimization process is iterative (and
initialized with an element of randomness in the K-mean
clustering), the number of iterations may also vary based on
a range of factors, including not only the number of input
images but also the complexity of the surface reflectance and
the optimality of the initial K-means clustering. For even
the slowest case, the optimization time is on the order of
hours, using modest hardware, which is on the same order
of magnitude as other steps in a photogrammetry pipeline
(such as view alignment and point cloud optimization), and
is therefore practical for its intended workflow.

Figure 6 shows the objects rendered in the Unity game
engine (using the Universal Render Pipeline with a custom
shader). For all three objects, nonlinear optimization was
utilized for estimating normal maps and smoothstep was
used when optimizing the basis functions, with all available
photographs taken as source images for optimization (188
photos for the altarpiece, 240 for Guan Yu, and 500 for the
ding). Nam et al.’s basis function representation was used for
highlights of punctual light sources, while the parametric
GGX model was applied for reflections of the environment
(using Unity’s built-in reflection probe system). These ren-
derings illustrate the effectiveness and applicability of both
representations for the purpose of incorporating museum
artifacts into an interactive virtual environment.

5 DISCUSSION

5.1 Analysis of surface normal estimation
The change affecting the optimization results most was the
use of nonlinear optimization rather than a linear simplifica-
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Fig. 6. Renderings of objects in the Unity game engine. Left: cloisonné altarpiece in a virtual museum gallery environment (using imagery of
a physical gallery from Mia). Center: Guan Yu in a 3D virtual studio environment modeled in Unity. Right: The ding vessel using an outdoor
environment map and a single directional light. Environment obtained from HDRI Hub. (https://www.hdri-hub.com/hdrishop/freesamples)

tion for surface normal estimation. More specifically, strong
bias was introduced when assuming the BRDF was constant
with respect to a small change in the surface normal (i.e.,
assuming the reflected radiance to be locally linear with
respect to the surface normal). To understand this, it is
important to identify the unintended effects that occur with
this assumption. First, because normals are optimized every
time the weights and basis functions are updated, we must
view even the linear simplification as an iterative method.
In particular, it is very similar to the Gauss-Newton method
for nonlinear optimization, except with an approximate
gradient that ignores specularity.

This approximation has two major implications. First,
the use of an approximation for the gradient can cause con-
vergence to surface normals that are not optimal. Second,
and more significantly, it is known that Gauss-Newton does
not guarantee convergence. In practice, our results show
that the linear simplification often results in divergence.

The Levenberg-Marquardt algorithm also makes an as-
sumption of local linearity, but is more robust in two re-
spects. First, by calculating the correct gradient, it improves
the likelihood of moving the estimate in the right direction.
Second, it uses a damping factor that effectively interpo-
lates between Gauss-Newton and the method of gradient
descent, which helps to ensure convergence.

One important takeaway from this study is that when
evaluating a technique for acquiring an SVBRDF of a surface
with unknown mesoscale geometry, it is important to test it
on an object with sufficient mesoscale geometric complexity.
Prior work (including but not limited to Nam et al.) has
often chosen shapes that are mostly smooth for evaluation
(even when claiming to support arbitrary 3D geometry),
which limits evaluation of the technique’s robustness. Ob-
jects like Guan Yu and the cloisonné altarpiece are exemplary
in this regard, with complex surface properties that produce
a rich surface appearance that is lost if the normals are not
reconstructed properly.

It is acknowledged that this work does omit one step
from the technique used by Nam et al., that of updating the
polygonal geometry. Although we argue that its omission
is justified due to the accuracy of photogrammetrically

acquired input geometry, it is possible that this step had
a damping effect of its own that prevented their results
from diverging to the same extent as what was observed
in the present work. Although an effort to reproduce their
results with this additional step could reveal whether this
was indeed the case, our analysis suggests that it would still
be more robust to use nonlinear optimization regardless of
whether a geometry update step is included.

5.2 Limitations and Future Work

One concern that is not addressed in this work is the prob-
lem of inter-reflections (both diffuse and specular). Gao et al.
[20] recently addressed this problem using neural networks.
However, the statue of Guan Yu used in this work does
exhibit minor specular inter-reflections, and our methods
still produce results of acceptable quality. Gao et al. showed
a problematic case where an object was photographed on
top of a specular surface. However, for an controlled stu-
dio setting (common in cultural heritage and online sales),
both diffuse and specular inter-reflections can be reduced
through the practice of photographing the artifact against a
black, diffuse background and resting surface. If necessary,
an inverse global illumination step might be introduced into
the pipeline to factor out diffuse inter-reflection; while this
has not yet proved necessary to obtain satisfying results, the
implementation of this idea would be an interesting avenue
for future study.

Another interesting extension of this work would be to
capture more spectral information about the object’s reflect-
ance. In principle, the method described in this work could
be extended beyond basic red/green/blue color acquisi-
tion by putting a spectral filter over the flash light source
and taking multiple exposures from the same camera pose
with different spectral filters; this would lead to a distinct
SVBRDF for each filter used. If the filters were chosen
carefully, it might be possible to simulate a spectrally correct
rendering of the object under a novel illuminant spectrum
by applying a linear combination of these SVBRDFs that
best matches the desired illuminant.
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6 CONCLUSION

This work refines an architecture introduced by Nam et al.
[1] that uses backscattering flash photographs to efficiently
recover an SVBRDF for 3D objects that may be shiny and
heterogeneous. By considering several modifications to their
algorithm, we have made some important observations.
First, we have demonstrated the importance of accurate
mesoscale surface normals and have shown that nonlin-
ear optimization is the best practice for accurate normal
estimation. In contrast, we saw that an algorithm built on
assumptions of local linearity without a damping factor
can lead to divergence. We have also seen that the use
of smoothstep functions may have both qualitative and
quantitative advantages over a simple monotonicity con-
straint for microfacet distribution estimation. Finally, we
have suggested that a GGX parametric representation, while
slightly inferior to a basis function representation for image
reconstruction, may be accurate enough and more efficient
for simulating secondary effects like masking / shadowing,
Fresnel reflectance, or filtered environment reflections.

Taken together, the findings of this work provide a
complete and practical pipeline for accurate acquisition and
rendering of color appearance for a wide range of subjects.
Unlike light stages and other modes of capturing SVBRDFs,
the only photographic hardware that is strictly required is
a camera with a mounted or built-in flash, a capability that
is even built into most smartphones. At the same time, the
method is able to provide more assurance of fidelity than
deep learning methods that only use one or two source
images and fill in the rest with a pretrained model. Using
Nam et al.’s framework with the refinements described in
this work, a high degree of color appearance fidelity can be
maintained while compressing a model to a representation
that can be easily loaded and rendered in a modern game
engine or 3D object library, making it immediately applica-
ble for many modern applications.
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